A family of compact complex and symplectic Calabi–Yau manifolds that are non-Kähler

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-compact Symplectic Toric Manifolds

The paradigmatic result in symplectic toric geometry is the paper of Delzant that classifies compact connected symplectic manifolds with effective completely integrable torus actions, the so called (compact) symplectic toric manifolds. The moment map induces an embedding of the quotient of the manifold by the torus action into the dual of the Lie algebra of the torus; its image is a simple unim...

متن کامل

Complex Hessian Equations on Some Compact Kähler Manifolds

On a compact connected 2m-dimensional Kähler manifold with Kähler form ω, given a smooth function f : M → R and an integer 1 < k < m, we want to solve uniquely in ω the equation ω̃ ∧ωm−k eω, relying on the notion of k-positivity for ω̃ ∈ ω the extreme cases are solved: k m by Yau in 1978 , and k 1 trivially . We solve by the continuity method the corresponding complex elliptic kthHessian equation...

متن کامل

Non-complex Symplectic 4-manifolds with B

In this paper we give a criterion whether a given minimal symplectic 4manifold with b+2 = 1 having a torsion-free canonical class is rational or ruled. As a corollary, we confirm that most of homotopy elliptic surfaces {E(1)K |K is a fibered knot in S } constructed by R. Fintushel and R. Stern are minimal symplectic 4-manifolds with b + 2 = 1 which do not admit a complex structure.

متن کامل

Minimal models of compact symplectic semitoric manifolds

A symplectic semitoric manifold is a symplectic 4-manifold endowed with a Hamiltonian (S1×R)-action satisfying certain conditions. The goal of this paper is to construct a new symplectic invariant of symplectic semitoric manifolds, the helix, and give applications. The helix is a symplectic analogue of the fan of a nonsingular complete toric variety in algebraic geometry, that takes into accoun...

متن کامل

Realization of Compact Lie Algebras in Kähler Manifolds

The Berezin quantization on a simply connected homogeneous Kähler manifold, which is considered as a phase space for a dynam-ical system, enables a description of the quantal system in a (finite-dimensional) Hilbert space of holomorphic functions corresponding to generalized coherent states. The Lie algebra associated with the manifold symmetry group is given in terms of first-order differentia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Geometry & Topology

سال: 2018

ISSN: 1364-0380,1465-3060

DOI: 10.2140/gt.2018.22.2115